Advanced Search
CAI Jing, MA Bolong, MO Weiyi, LYU Qingzi, HOU Zhuoliang, GUO Jiaxuan, CHEN Yixuan. 2024: The effect mechanism of drought and frost damage on plant water transport——xylem embolism and cavitation fatigue. Tree Health, 1(1): 9-17.
Citation: CAI Jing, MA Bolong, MO Weiyi, LYU Qingzi, HOU Zhuoliang, GUO Jiaxuan, CHEN Yixuan. 2024: The effect mechanism of drought and frost damage on plant water transport——xylem embolism and cavitation fatigue. Tree Health, 1(1): 9-17.

The effect mechanism of drought and frost damage on plant water transport——xylem embolism and cavitation fatigue

More Information
  • Received Date: June 06, 2024
  • Revised Date: July 11, 2024
  • Available Online: October 17, 2024
  • Water is the fundamental element for the maintenance of vital activities and physiological biochemical processes within plants. Efficient and safe water transport through xylem to maintain an adequate water balance is crucial for the growth, survival, and distribution of plants. Drought and frost damage, the two most common forms of abiotic stress, result in xylem embolism, which obstructs water transportation and decreases hydraulic conductivity, thereby threatening plant growth and development. We summarize the formation and propagation mechanisms of xylem embolism caused by drought and frost. We further analyze xylem resistance to drought-induced and freeze-thaw-induced embolism and its relationship with xylem conduit anatomy. We also explore the fatigue phenomena caused by drought and frost (cavitation fatigue and frost fatigue) and their underlying mechanisms. Lastly, based on the current forefront and advancements in plant hydraulics research, several prospective research directions are suggested.

  • 金鹰, 王传宽, 周正虎. 2016. 木本植物木质部栓塞修复机制: 研究进展与问题[J]. 植物生态学报, 40(8): 834−846.

    Jin Y, Wang C K, Zhou Z H. 2016. Mechanisms of xylem embolism repair in woody plants: Research progress and questions[J]. Chinese Journal of Plant Ecology, 40(8): 834−846.
    李荣, 党维, 蔡靖等. 2016. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 40(3): 255−263.

    Li R, Dang W, Cai J, et al. 2016. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees[J]. Chinese Journal of Plant Ecology, 40(3): 255−263.
    李姗, 李玉军, 张亚等. 2022. 基于具缘纹孔膜特征的木质部栓塞机制研究进展[J]. 林业科学, 58(2): 196−205.

    Li S, Li Y J, Zhang Y, et al. 2022. Research progress in mechanism of xylem embolism based on characteristics of bordered pit membrane[J]. Scientia Silvae Sinicae, 58(2): 196−205.
    Allan R P, AchutaRao K M. 2021. Climate Change 2021: the physical science basis: Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on climate change[M]. UK: Cambridge University Press.
    Allen C D, Macalady A K, Chenchouni H, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 259(4): 660−684.
    Améglio T, Bodet C, Lacointe A, et al. 2002. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees[J]. Tree Physiology, 22(17): 1211−1220.
    Anderegg W R L, Klein T, Bartlett M, et al. 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(18): 5024−5029.
    Anderegg W R L, Plavcová L, Anderegg L D L, et al. 2013. Drought' s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk[J]. Global Change Biology, 19(4): 1188−1196.
    Arend M, Link R M, Patthey R, et al. 2021. Rapid hydraulic collapse as cause of drought-induced mortality in conifers[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2025251118.
    Awad H, Barigah T, Badel E, et al. 2010. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions[J]. Physiologia Plantarum, 139(3): 280−288.
    Ball M C, Canny M J, Huang C X, et al. 2006. Freeze/thaw-induced embolism depends on nadir temperature: the heterogeneous hydration hypothesis[J]. Plant, Cell & Environment, 29(5): 729−745.
    Bouche P S, Larter M, Domec J C, et al. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers[J]. Journal of Experimental Botany, 65(15): 4419−4431.
    Brodribb T J, Feild T S. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests[J]. Plant, Cell & Environment, 23(12): 1381−1388.
    Cai J, Tyree M T. 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant, Cell & Environment, 33(7): 1059−1069.
    Cardoso A A, Batz T A, McAdam S A M. 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana[J]. Plant Physiology, 182(1): 547−554.
    Charra-Vaskou K, Badel E, Charrier G, et al. 2016. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles[J]. Journal of Experimental Botany, 67(3): 739−750.
    Charrier G, Charra-Vaskou K, Kasuga J, et al. 2014. Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms[J]. Plant Physiology, 164(2): 992−998.
    Charrier G, Cochard H, Améglio T. 2013. Evaluation of the impact of frost resistances on potential altitudinal limit of trees[J]. Tree Physiology, 33(9): 891−902.
    Charrier G, Pramsohler M, Charra-Vaskou K, et al. 2015. Ultrasonic emissions during ice nucleation and propagation in plant xylem[J]. New Phytologist, 207(3): 570−578.
    Chen Z C, Zhu S D, Zhang Y T, et al. 2020. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species[J]. Tree Physiology, 40(8): 1029−1042.
    Choat B, Brodribb T J, Brodersen C R, et al. 2018. Triggers of tree mortality under drought[J]. Nature, 558(7711): 531−539.
    Choat B, Cobb A R, Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function[J]. New Phytologist, 177(3): 608−626.
    Choat B, Jansen S, Brodribb T J, et al. 2012. Global convergence in the vulnerability of forests to drought[J]. Nature, 491(7426): 752−755.
    Christensen-Dalsgaard K K, Tyree M T. 2013. Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?[J]. Oecologia, 173(3): 665−674.
    Christensen-Dalsgaard K K, Tyree M T. 2014. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ[J]. Plant, Cell & Environment, 37(5): 1074−1085.
    Christman M A, Sperry J S, Adler F R. 2009. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer[J]. New Phytologist, 182(3): 664−674.
    Christman M A, Sperry J S, Smith D D. 2012. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species[J]. New Phytologist, 193(3): 713−720.
    Cochard H, Barigah S T, Kleinhentz M, et al. 2008. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species?[J]. Journal of Plant Physiology, 165(9): 976−982.
    Cochard H, Lemoine D, Améglio T, et al. 2001. Mechanisms of xylem recovery from winter embolism in Fagus sylvatica[J]. Tree Physiology, 21(1): 27−33.
    Dai Y X, Wang L, Wan X C. 2020. Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ[J]. Plant Physiology and Biochemistry, 146: 177−186.
    Davis S D, Ewers F W, Sperry J S, et al. 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure[J]. American Journal of Botany, 89(5): 820−828.
    Davis S D, Sperry J S, Hacke U G. 1999. The relationship between xylem conduit diameter and cavitation caused by freezing[J]. American Journal of Botany, 86(10): 1367−1372.
    Delzon S, Douthe C, Sala A N, et al. 2010. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding[J]. Plant, Cell & Environment, 33(12): 2101−2111.
    Dixon H H, Joly J. 1895. XII. On the ascent of sap[J]. Philosophical Transactions of the Royal Society of London (B), 186: 563−576.
    Domec J C, Lachenbruch B, Meinzer F C. 2006. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees[J]. American Journal of Botany, 93(11): 1588−1600.
    Domec J C, Gartner B L. 2001. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees[J]. Trees, 15(4): 204−214.
    Eller C B, de V Barros F, Bittencourt P R L, et al. 2018. Xylem hydraulic safety and construction costs determine tropical tree growth[J]. Plant, Cell & Environment, 41(3): 548−562.
    Feild T S, Brodribb T. 2001. Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath[J]. Oecologia, 127(3): 314−320.
    Feng F, Losso A, Tyree M, et al. 2021. Cavitation fatigue in conifers: a study on eight European species[J]. Plant Physiology, 186(3): 1580−1590.
    Feng F, Ding F, Tyree M T. 2015. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements[J]. Plant Physiology, 168(1): 144−155.
    Fichot R, Brignolas F, Cochard H, et al. 2015. Vulnerability to drought-induced cavitation in poplars: synthesis and future opportunities[J]. Plant, Cell & Environment, 38(7): 1233−1251.
    Hacke U G, Sperry J S, Pockman W T, et al. 2001a. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure[J]. Oecologia, 126(4): 457−461.
    Hacke U G, Sperry J S, Wheeler J K, et al. 2006. Scaling of angiosperm xylem structure with safety and efficiency[J]. Tree Physiology, 26(6): 689−701.
    Hacke U G, Stiller V, Sperry J S, et al. 2001b. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem[J]. Plant Physiology, 125(2): 779−786.
    Hacke U G, Sperry J S. 2001c. Functional and ecological xylem anatomy[J]. Perspectives in Plant Ecology, Evolution and Systematics, 4(2): 97−115.
    Hajek P, Leuschner C, Hertel D, et al. 2014. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus[J]. Tree Physiology, 34(7): 744−756.
    Hammond W M, Williams A P, Abatzoglou J T, et al. 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth' s forests[J]. Nature Communications, 13(1): 1761.
    Hao G Y, Wheeler J K, Holbrook N M, et al. 2013. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry[J]. Journal of Experimental Botany, 64(8): 2321−2332.
    Hillabrand R M, Hacke U G, Lieffers V J. 2016. Drought-induced xylem pit membrane damage in aspen and balsam poplar[J]. Plant, Cell & Environment, 39(10): 2210−2220.
    Isasa E, Link R M, Jansen S, et al. 2023. Addressing controversies in the xylem embolism resistance-vessel diameter relationship[J]. New Phytologist, 238(1): 283−296.
    Jacobsen A L, Ewers F W, Pratt R B, et al. 2005. Do xylem fibers affect vessel cavitation resistance?[J]. Plant Physiology, 139(1): 546−556.
    Jacobsen A L, Brandon Pratt R, Venturas M D, et al. 2019. Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar[J]. IAWA Journal, 40(1): 4−S4.
    Jansen S, Choat B, Pletsers A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[J]. American Journal of Botany, 96(2): 409−419.
    Jansen S, Klepsch M, Li S, et al. 2018. Challenges in understanding air-seeding in angiosperm xylem[J]. Acta Horticulturae, 1222: 13−20.
    Jansen S, Lamy J B, Burlett R, et al. 2012. Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem[J]. Plant, Cell & Environment, 35(6): 1109−1120.
    Kaack L, Weber M, Isasa E, et al. 2021. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms[J]. New Phytologist, 230(5): 1829−1843.
    Kasuga J, Charrier G, Uemura M, et al. 2015. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze-thaw-induced embolism formation[J]. Journal of Experimental Botany, 66(7): 1965−1975.
    Larter M, Pfautsch S, Domec J C, et al. 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris[J]. New Phytologist, 215(1): 97−112.
    Lens F, Gleason S M, Bortolami G, et al. 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms[J]. New Phytologist, 236(6): 2019−2036.
    Lens F, Sperry J S, Christman M A, et al. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytologist, 190(3): 709−723.
    Levionnois S, Jansen S, Wandji R T, et al. 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees[J]. New Phytologist, 229(3): 1453−1466.
    Li S, Lens F, Espino S, et al. 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem[J]. IAWA Journal, 37(2): 152−171.
    Li S, Wang J, Yin Y F, et al. 2020. Investigating effects of bordered pit membrane morphology and properties on plant xylem hydraulic functions-a case study from 3D reconstruction and microflow modelling of pit membranes in angiosperm xylem[J]. Plants, 9(2): 231.
    Lobo A, Torres-Ruiz J M, Burlett R, et al. 2018. Assessing inter- and intraspecific variability of xylem vulnerability to embolism in oaks[J]. Forest Ecology and Management, 424: 53−61.
    Loepfe L, Martinez-Vilalta J, Piñol J, et al. 2007. The relevance of xylem network structure for plant hydraulic efficiency and safety[J]. Journal of Theoretical Biology, 247(4): 788−803.
    López R, López de Heredia U, Collada C, et al. 2013. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis)[J]. Annals of Botany, 111(6): 1167−1179.
    Maherali H, Pockman W T, Jackson R B. 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation[J]. Ecology, 85(8): 2184−2199.
    Martínez-Vilalta J, Mencuccini M, Alvarez X, et al. 2012. Spatial distribution and packing of xylem conduits[J]. American Journal of Botany, 99(7): 1189−1196.
    Mayr S, Améglio T. 2016. Freezing stress in tree xylem[M]. Switzerland: Springer International Publishing.
    Mayr S, Cochard H, Améglio T, et al. 2007. Embolism formation during freezing in the wood of Picea abies[J]. Plant Physiology, 143(1): 60−67.
    Mayr S, Gruber A, Bauer H. 2003a. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine)[J]. Planta, 217(3): 436−441.
    Mayr S, Hacke U, Schmid P, et al. 2006. Frost drought in conifers at the alpine timberline: Xylem dysfunction and adaptations[J]. Ecology, 87(12): 3175−3185.
    Mayr S, Schwienbacher F, Bauer H. 2003b. Winter at the alpine timberline. Why does embolism occur in Norway spruce but not in stone pine?[J]. Plant Physiology, 131(2): 780−792.
    Mayr S, Sperry J S. 2010. Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments validate the 'thaw-expansion hypothesis' but conflict with ultrasonic emission data[J]. New Phytologist, 185(4): 1016−1024.
    Mazur P. 1984. Freezing of living cells: mechanisms and implications[J]. The American Journal of Physiology, 247(3): C125−C142.
    McDowell N, Pockman W T, Allen C D, et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?[J]. New Phytologist, 178(4): 719−739.
    Mrad A, Johnson D M, Love D M, et al. 2021. The roles of conduit redundancy and connectivity in xylem hydraulic functions[J]. New Phytologist, 231(3): 996−1007.
    Nardini A, Savi T, Trifilò P, et al. 2017. Drought stress and the recovery from xylem embolism in woody plants[M]//Progress in Botany. Cham: Springer International Publishing: 197−231.
    Neuner G, Pramsohler M. 2006. Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants[J]. Physiologia Plantarum, 126(2): 196−204.
    Oliveira R S, Costa F R C, van Baalen E, et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients[J]. New Phytologist, 221(3): 1457−1465.
    Pittermann J, Sperry J. 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers[J]. Tree Physiology, 23(13): 907−914.
    Pittermann J, Sperry J S. 2006. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size[J]. Plant Physiology, 140(1): 374−382.
    Pratt R B, Castro V, Fickle J C, et al. 2020. Factors controlling drought resistance in grapevine (Vitis vinifera, chardonnay): application of a new microCT method to assess functional embolism resistance[J]. American Journal of Botany, 107(4): 618−627.
    Pratt R B, Ewers F W, Lawson M C, et al. 2005. Mechanisms for tolerating freeze-thaw stress of two evergreen chaparral species: Rhus ovata and Malosma laurina (Anacardiaceae)[J]. American Journal of Botany, 92(7): 1102−1113.
    Robson D J, McHardy W J, Petty J A. 1988. Freezing in conifer xylem: II. pit aspiration and bubble formation[J]. Journal of Experimental Botany, 39(11): 1617−1621.
    Schenk H J, Espino S, Romo D M, et al. 2017. Xylem surfactants introduce a new element to the cohesion-tension theory[J]. Plant Physiology, 173(2): 1177−1196.
    Scholz A, Rabaey D, Stein A, et al. 2013. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species[J]. Tree Physiology, 33(7): 684−694.
    Song Y J, Poorter L, Horsting A, et al. 2022. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species[J]. Journal of Experimental Botany, 73(3): 1033−1048.
    Sperry J S, Donnelly J R, Tyree M T. 1988a. A method for measuring hydraulic conductivity and embolism in xylem[J]. Plant, Cell & Environment, 11(1): 35−40.
    Sperry J S, Hacke U G, Pittermann J. 2006. Size and function in conifer tracheids and angiosperm vessels[J]. American Journal of Botany, 93(10): 1490−1500.
    Sperry J S, Robson D J. 2001. Xylem cavitation and freezing in conifers[M]. Tree Physiology. Dordrecht: Springer Netherlands: 121−136.
    Sperry J S, Sullivan J E. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species[J]. Plant Physiology, 100(2): 605−613.
    Sperry J S, Tyree M T. 1988b. Mechanism of water stress-induced xylem embolism[J]. Plant Physiology, 88(3): 581−587.
    Stiller V, Sperry J S. 2002. Cavitation fatigue and its reversal in sunflower (Helianthus annuus L. )[J]. Journal of Experimental Botany, 53(371): 1155−1161.
    Thonglim A, Delzon S, Larter M, et al. 2021. Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of Arabidopsis thaliana accessions[J]. Annals of Botany, 128(2): 171−182.
    Tixier A, Herbette S, Jansen S, et al. 2014. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms[J]. Annals of Botany, 114(2): 325−334.
    Trueba S, Pouteau R, Lens F, et al. 2017. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island[J]. Plant, Cell & Environment, 40(2): 277−289.
    Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap[M]. Switzerland: Springer International Publishing.
    Tyree M T, Sperry J S. 1989. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 40: 19−36.
    Umebayashi T, Sperry J S, Smith D D, et al. 2019. 'Pressure fatigue': the influence of sap pressure cycles on cavitation vulnerability in Acer negundo[J]. Tree Physiology, 39(5): 740−746.
    Venturas M D, Sperry J S, Hacke U G. 2017. Plant xylem hydraulics: What we understand, current research, and future challenges[J]. Journal of Integrative Plant Biology, 59(6): 356−389.
    Wason J W, Anstreicher K S, Stephansky N, et al. 2018. Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees[J]. New Phytologist, 219(1): 77−88.
    Wason J, Bouda M, Lee E F, et al. 2021. Xylem network connectivity and embolism spread in grapevine(Vitis vinifera L. )[J]. Plant Physiology, 186(1): 373−387.
    Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 28(6): 800−812.
    Yang J L, M Michaud J, Jansen S, et al. 2020. Dynamic surface tension of xylem sap lipids[J]. Tree Physiology, 40(4): 433−444.
    Yin X H, Sterck F, Hao G Y. 2018. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation[J]. New Phytologist, 219(2): 530−541.
    Zhang W, Feng F, Tyree M T. 2018. Seasonality of cavitation and frost fatigue in Acer mono Maxim[J]. Plant, Cell & Environment, 41(6): 1278−1286.
    Zhang Y, Carmesin C, Kaack L, et al. 2020. High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem[J]. Plant, Cell & Environment, 43(1): 116−130.

Catalog

    Article views (69) PDF downloads (30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return